2,265 research outputs found

    Squeezed Light and Entangled Images from Four-Wave-Mixing in Hot Rubidium Vapor

    Full text link
    Entangled multi-spatial-mode fields have interesting applications in quantum information, such as parallel quantum information protocols, quantum computing, and quantum imaging. We study the use of a nondegenerate four-wave mixing process in rubidium vapor at 795 nm to demonstrate generation of quantum-entangled images. Owing to the lack of an optical resonator cavity, the four-wave mixing scheme generates inherently multi-spatial-mode output fields. We have verified the presence of entanglement between the multi-mode beams by analyzing the amplitude difference and the phase sum noise using a dual homodyne detection scheme, measuring more than 4 dB of squeezing in both cases. This paper will discuss the quantum properties of amplifiers based on four-wave-mixing, along with the multi mode properties of such devices.Comment: 11 pages, 8 figures. SPIE Optics and Photonics 2008 proceeding (San Diego, CA

    Comics reading: An automatic script generation

    Get PDF
    With the advent of portable devices, reading comic ebooks is a popular activity. However, a simple scan of a comic page is not well adapted for portable device screens and a panel to panel reading without animations and adapted transitions is quite uncomfortable and not suitable. Moreover, applying manually transitions between each panel to script a complete comic book is a tricky task and seems impossible for a complete collection of comics. We present a model able to automatically script comics reading by using panel lines of force. Our results demonstrate that this model proposes a coherent solution for 87.2% of panels in an interactive time

    Low-Noise Amplification of a Continuous Variable Quantum State

    Full text link
    We present an experimental realization of a low-noise, phase-insensitive optical amplifier using a four-wave mixing interaction in hot Rb vapor. Performance near the quantum limit for a range of amplifier gains, including near unity, can be achieved. Such low-noise amplifiers are essential for so-called quantum cloning machines and are useful in quantum information protocols. We demonstrate that amplification and ``cloning'' of one half of a two-mode squeezed state is possible while preserving entanglement.Comment: To appear in Physical Review Letters July 3rd. 4 pages, 4 figure

    Observation of Localized Multi-Spatial-Mode Quadrature Squeezing

    Get PDF
    Quantum states of light can improve imaging whenever the image quality and resolution are limited by the quantum noise of the illumination. In the case of a bright illumination, quantum enhancement is obtained for a light field composed of many squeezed transverse modes. A possible realization of such a multi-spatial-mode squeezed state is a field which contains a transverse plane in which the local electric field displays reduced quantum fluctuations at all locations, on any one quadrature. Using a traveling-wave amplifier, we have generated a multi-spatial-mode squeezed state and showed that it exhibits localized quadrature squeezing at any point of its transverse profile, in regions much smaller than its size. We observe 75 independently squeezed regions. The amplification relies on nondegenerate four-wave mixing in a hot vapor and produces a bichromatic squeezed state. The result confirms the potential of this technique for producing illumination suitable for practical quantum imaging

    Forward dynamics of continuum and soft robots: a strain parametrization based approach

    Get PDF
    soumis Ă  IEEE TROIn this article we propose a new solution to the forward dynamics of Cosserat beams with in perspective, its application to continuum and soft robotics manipulation and locomotion. In contrast to usual approaches, it is based on the non-linear parametrization of the beam shape by its strain fields and their discretization on a functional basis of strain modes. While remaining geometrically exact, the approach provides a minimal set of ordinary differential equations in the usual Lagrange matrix form that can be solved with standard explicit time-integrators. Inspired from rigid robotics, the calculation of the matrices of the Lagrange model is performed with a continuous inverse Newton-Euler algorithm. The approach is tested on several numerical benches of non-linear structural statics, as well as further examples illustrating its capabilities for dynamics

    Polycomb Repressive Complex 2 Regulates Lineage Fidelity during Embryonic Stem Cell Differentiation

    Get PDF
    Polycomb Repressive Complex 2 (PRC2) catalyzes histone H3 lysine 27 tri-methylation (H3K27me3), an epigenetic modification associated with gene repression. H3K27me3 is enriched at the promoters of a large cohort of developmental genes in embryonic stem cells (ESCs). Loss of H3K27me3 leads to a failure of ESCs to properly differentiate, making it difficult to determine the precise roles of PRC2 during lineage commitment. Moreover, while studies suggest that PRC2 prevents DNA methylation, how these two epigenetic regulators coordinate to regulate lineage programs is poorly understood. Using several PRC2 mutant ESC lines that maintain varying levels of H3K27me3, we found that partial maintenance of H3K27me3 allowed for proper temporal activation of lineage genes during directed differentiation of ESCs to spinal motor neurons (SMNs). In contrast, genes that function to specify other lineages failed to be repressed in these cells, suggesting that PRC2 is also necessary for lineage fidelity. We also found that loss of H3K27me3 leads to a modest gain in DNA methylation at PRC2 target regions in both ESCs and in SMNs. Our study demonstrates a critical role for PRC2 in safeguarding lineage decisions and in protecting genes against inappropriate DNA methylation.National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051)National Institutes of Health (U.S.) (Training Grant T 32 GM007287)Smith Family Foundation (Contract LTR DATED 11/6/09

    Synthesis of an electric sensor based control for underwater multi-agents navigation in a file

    Get PDF
    International audienceThanks to an electro-sensible skin, some species of fish can feel the surrounding electric field generated by them-self or other fish. Known under the name of "electric-sense", this ability allows these fish to navigate in confined surroundings. Based on a bio-inspired electric sensor, this article presents how this electric sense can be used for the navigation in formation of several underwater vehicles. The formation considered is a file, each vehicle is assumed to follow its predecessor at a given distance. In confined environment, the file formation is interesting since fish can follow the same safe path. Being based on the servoing of the electric measurements, these laws do not require the knowledge of the location of the agents. The underwater vehicle studied have non holonomic properties, their forward velocity has no lateral component. Depending on the choice of the controlled outputs (combination of electric measures) we will see that path followed by the follower agents can be different and a methodology to choose the output will be defined in order that all the agents follow the leader path in presence of curved motion of the leader. The influence of the number of electrodes is discussed. Simulation results illustrate the proposed approach

    Recent Advances on GPU Computing in Operations Research

    Get PDF
    Abstract-In the last decade, Graphics Processing Units (GPUs) have gained an increasing popularity as accelerators for High Performance Computing (HPC) applications. Recent GPUs are not only powerful graphics engines but also highly threaded parallel computing processors that can achieve sustainable speedup as compared with CPUs. In this context, researchers try to exploit the capability of this architecture to solve difficult problems in many domains in science and engineering. In this article, we present recent advances on GPU Computing in Operations Research. We focus in particular on Integer Programming and Linear Programming

    Recent Advances on GPU Computing in Operations Research

    Get PDF
    In the last decade, Graphics Processing Units (GPUs) have gained an increasing popularity as accelerators for High Performance Computing (HPC) applications. Recent GPUs are not only powerful graphics engines but also highly threaded parallel computing processors that can achieve sustainable speedup as compared with CPUs. In this context, researchers try to exploit the capability of this architecture to solve difficult problems in many domains in science and engineering. In this article, we present recent advances on GPU Computing in Operations Research. We focus in particular on Integer Programming and Linear Programming
    • …
    corecore